wgrk.net
当前位置:首页 >> 导数 微分 区别 >>

导数 微分 区别

其实从几何几何意义上来理解就很简单了,导数是函数图像在某一点处的斜率,也就是纵坐标变化率和横坐标变化率的比值。微分是指函数图像在某一点处的切线在横坐标取得Δx以后,纵坐标取得的增量。

简单的理解,导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分是求原函数,可以形象理解为是函数导数的逆运算。 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可...

对于满足条件的函数f(x),对其微分是指 df=f'(x)dx,而对其求导就是f'(x),求导就是函数的微分与自变量微分的比值,亦称“微商”

导数是函数的变化率 微分是函数改变量中的主部分 从直观来看导数是切线斜率 而微分表现为切线上的一段长度

1.偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(...

算法上没有区别,表达形式有区别

以上均成立,因为f在x0处可导,df/dx必定在U(x0)连续,根据连续函数的极限运算,可知以上式子均成立。

这两者是不同的,粗略来看很多人会认为这两者是一样的,但是其数学含义是不同的,而且严格说两者不是相等的关系。 从数学符号的意义上来说,dy与Δy是不同的,dx与Δx也是不同的。一般地,Δ~代表做“差(分)”运算之后的结果,是一个具体精确的表达。...

(1)起源(定义)不同:导数起源是函数值随自变量增量的变化率,即△y/△x的极限.微分起源于微量分析,如△y可分解成A△x与o(△x)两部分之和,其线性主部称微分.当△x很小时,△y的数值大小主要由微分A△x决定,而o(△x)对其大小的影响是很小的. (2)几何意义不...

二者的关系,现在的微积分是这么讲的,dy=f'(x)dx或者dy/dx=f'(x)是导数,dx, dy是微分,也就是微分的概念是由导数推导出来的,其中,dx是x的变化量,即dx=deltaX, dy=f'(x)dx. 如果你学的是高数的话,知道了导数,自然就知道dy了,这就可以了...

网站首页 | 网站地图
All rights reserved Powered by www.wgrk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com